

Michał Strzelecki Institute of Electronics

Medical Imaging

Introduction to Medical Imaging

Biomedical Engineering, 2023

Medical Imaging

- Introduction
- Image quality
- Imaging technology:
 - Radiography
 - Computed Tomography
 - Magnetic Resonance Imaging
 - Nuclear Medicine
 - Endoscopy
 - Thermography prof. Marcin Janicki, DMCS
 - Ultrasonography
- Processing & analysis of medical images

Learning outcomes

- Written test

By the end of this subject student should be able to:

- 1. explain the basic principles of the major medical imaging techniques;
- 2. explain the mode of operation and medical applications of the major medical imaging techniques;
- 3. understand the advantages and disadvantages of the major imaging techniques, including potential hazards for patients;
- 4. define clinical applications of medical imaging modalities

5. make use of sample software (or implement simple algorithms) to display and process/analyse biomedical images.

Introduction to Medical Imaging

Lab report

References

- Lecture notes (.pdf files)
- W.R. Hendee, E.R. Ritenour, Medical Imaging Physics, Wiley-Liss, 2002
- C. Guy, D. ffytche, An Introduction to The Principles of Medical Imaging, Imperial College Press, 2008
- R. Tadeusiewicz, J. Smietański, Pozyskiwanie obrazów medycznych oraz ich przetwarzanie, analiza, automatyczne rozpoznawanie i diagnostyczna interpretacja, Wydawnictwo Studenckiego Towarzystwa Naukowego, Kraków 2011 (PL)

Rewolution in medical diagnosis

- Advances in microelectronics and computer science ("imaging informatics")
- Development of tissue imaging technology
- Qualitative diagnosis -> quantitative diagnosis
- "Evidence-based medicine"

Medical Diagnosis - determination of the identity of a possible disease or disorder

Monochrome image as a 2D function

RGB color image

Politechnika Łódzka Instytut Elektroniki

Introduction to Medical Imaging

RGB color image color components profiles

RGB image and colour components profiles

Medical Imaging – Biomedical Engineering

Х

Digital image as pixel array

(0,0) BUILDING.TIF ..15 17 18.. ..20 31 14..

Digital image as pixel array

2D array (*M*,*N*), ie. of *M* rows and *N* columns, of nonnegative elements assuming a limited number of levels

$$f(x, y) = 0, 1, ..., L-1$$

$$x = 0, 1, ..., N - 1$$

$$y = 0, 1, ..., M - 1$$

Color digital image?

Politechnika Łódzka Instytut Elektroniki

Color digital RGB image

If each of the color component is 8 bit coded then 2²⁴ different colors can be obtained

Color indexed image

Monochrome image

Color palette (look-up table) Color image

3D images

Electromagnetic spectrum

Politechnika Łódzka Instytut Elektroniki

Deep networks – testing phase

input image

testing: network analyses images not present in training set (generalization) network result: segmented organ, detected disesase or pathology, degree of changes

Image filtering in intensity domain

- Linear filters
 - "smoothing" (noise reduction)
 - "sharpening" (details enhancement)
 - Edge detectors
- Nonlinear filters
 - -- rank filtering (median)

distorted image

after median filtration

Segmentation of Brodatz textures

Segmentation of MR foot image

Segmentation of heart mass echocardiogram

Segmentation based on edge detection

oscillator network

Politechnika Łódzka Instytut Elektroniki

Medical Imaging – Biomedical Engineering

Examination costs (Poland)

Examination costs (US)

Why so many imaging modalities?

- Sonography (53%-77% lesions)
- CT (I. vasculature gold standard)
- MRI (91% benign malignant discrimination)
- PET (highest sensitivity in tumor detection)

Radiography

Roentgen radiation (X-ray radiation), discovered and described by Wilhelm Röntgen in 1895, Nobel prize in physics in 1901.

Ms. Röntgen hand x-ray

Radiography

- film images,
- digital images,
- invasive examination,
- limited quality,
- low equipment price, mobility

Radiography

Applications: orthopedics pulmunology dentistry Diagnosis: breast cancer (mammography) osteoporosis

dr Piotr Cichy

www.kavo.pl, Gendex

Digital Breast Tomosynthesis

Breast composition and its mammographic appearance.¹

mammography

Fluoroscopy – ra sequence of X-ray images

Introduction to Medical Imaging

Analysis of wrist radiograms Markov Random Field model Osteoporosis (3) Control (1) Osteopenia (2) 33 0.97 0.14 3 3 Ь21 3 ³ 3 MDF 2 0.47 2 333 3 2 1.15 2 2 Liniear Ь12 3 Ь11 Discriminant 3 2 1.79 0.57 Analysis 2 2 2 -0.14 Classsifcation error: 9% -0.13 0.08 MDF 1 Classification error: 0%

Politechnika Łódzka

Introduction to Medical Imaging

1.03

Computed Tomography (CT)

- cross-section images
 (not a projections)
- not applicable for soft tissues,
- very good image quality,
- invasive examination,
- high equipment price

biomech.pwr.wroc.pl/ konferencja/Cierniak.pdf

Introduction to Medical Imaging

POlitechnika Łódzka Instytut Elektroniki

Hounsfielda units

The Hounsfield units scale is a linear transformation of the measurement of the linear X-ray attenuation coefficient in which the radiological density of distilled water at standard temperature and pressure (0°C, 1000 hPa) is defined as zero Hounsfield units (HU), while air density under standard conditions is defined as - 1000 HU. [https://pl.wikipedia.org/wiki/Skala_Hounsfielda]

ип —	μ_X –	$-\mu_{H_2O}$	1000
HU =	$\mu_{H_{n}0}$	$-\mu_{air}$	

Rodzaj tkanki	Współczynnik pochłaniania (jH.) od 300 do 1000	
Kości		
Tarczyca	70 ± 10	
Wątroba	$65 \pm 5,0$	
Śledziona	$50 \pm 5,0$	
Nerka	30 ± 10	
Trzustka	40 ± 10	
Tkanka tłuszczowa	-65 ± 10	
Płuca	od –600 do –800	
Płyny ustrojowe:		
 Krew wynaczyniona (do 6–8 dnia po krwotoku) 	80 ± 10	
Krew żylna	$55 \pm 5,0$	
• Wysięk	>18 ± 2,0	
Przesięk	<18 ± 2,0	

[B. Pruszyński, Tomografia komputerowa, PZWL]

CT angiography

contrast examination: detection of aneurysms, analysis of arteries in the lungs, kidneys, aortic dissection examination, assessment of the blood supply to the brain

M. Strzelecki, Obrazowanie w diagnostyce medycznej

Computed Tomography (CT)

Applications: neurology cardiology pulmunology gastroenterology

Diagnosis: brain tumors kidney, liver lung diseases

Ultrasonography

- low image quality,
- difficult for interpretation,
- Ultrasound elasticity (tissue stiffness measurement)
- blood flow examination (Doppler effect),
- non-invasive examination,

low equipment price, mobility

Ultrasonography

Transducer Basics

Medical Imaging – Biomedical Engineering

Ultrasonography

Applications:

cardiology ginecology&obstetrics urology gastrology

Diagnosis: prostate, urinary bladder uterus

Medical Imaging – Biomedical Engineering

Ultrasonography

Instytut Elektroniki

Analysis of heart echo images (classification)

Analysis of heart echo images (segmentation)

Magnetic Resonance Imaging (MRI)

- effective for soft tissues,
- functional tomography (BOLD),
- MR angiography,
- very good image quality,
- non-invasive examination,
- high equipment price

Introduction to Medical Imaging

Magnetic Resonance Imaging (MRI)

Applications: neurology angiography gastroenterology

Diagnosis: brain tumors abdomen organs osteoporosis

Measured brain signal

Brain activation map

Visual stimulus

Reconstructing visual experiences from brain activity evoked by natural movies (The Gallant Lab, UC Berkeley)

istytut Elektroniki

[1] Record brain activity while the subject watches several hours of movie trailers.

[2] Build dictionaries (i.e., regression models) that translate between the shapes, edges and motion in the movies and measured brain activity. A separate dictionary is constructed for each of several thousand points at which brain activity was measured.

Introduction to Medical Imaging

51

[3] Record brain activity to a new set of movie trailers that will be used to test the quality of the dictionaries and reconstructions.

© Arvid Ludervold, 2012

https://www.youtube.com/watch?v=6FsH7RK1S2E

[4] Build a random library of ~18,000,000 seconds (5000 hours) of video downloaded at random from YouTube. (Note these videos have no overlap with the movies that subjects saw in the magnet). Put each of these clips through the dictionaries to generate predictions of brain activity. Select the 100 clips whose predicted activity is most similar to the observed brain activity. Average these clips together. This is the reconstruction.

http://www.youtube.com/watch?v=nsjDnYxJ0bo

Politechnika Łódzka Instytut Elektroniki

Medical Termography

- low image quality
- complementary procedure to other diagnostic modalities
- non-invasive examination
- low equipment price, mobility

Segmentation of MR foot image

Nuclear Medicine

- different approaches (PET, SPECT, Scintigraphy)
- analysis of molecular changes,
- often together with CT,
- short examination time (limited by half-life disintegration of radioisotope),
- invasive examination,
- high equipment price

Nuclear Medicine

Applications:

almost all medical specialties

Diagnosis:

Huntington, Alzheimer, Parkinson diseases early stage tumor detection

Endoscopy

- optical images of internal organs,
- additional surgical intervention (laparoscopy),
- endoscopic capsules,
- image processing is necessary,
- invasive examination,
- high equipment price

Endoscopy

Applications:

gastrointestinal tract (stomach, intestine, colon) respiratory tract urinary tract Laparoscopy: removal of the gallbladder, polyp,...

Endoscopic capsule

prof. Piotr Szczypiński, IE

Recent advances: PET + MRI

Imaging device that simultaneously performs positron-emission tomography (PET) and magnetic resonance imaging (MRI) scans, producing more detailed images than either technique alone and thus providing extended diagnostic information.

http://www.youtube.com/watch?feature=player_embedded&v=K2hAcri-ZIE https://www.youtube.com/watch?v=r3TiTfMNLw8

References

- W. R. Hendee, E.R. Ritenour, Medical Imaging Physics, Wiley-Liss, 2002
- C. Guy, D. ffytche, An Introduction to The Principles of Medical Imaging, Imperial College Press, 2008
- <u>http://en.wikipedia.org/wiki/Magnetic_resonance_imaging</u>
- <u>http://en.wikipedia.org/wiki/Medical_imaging</u>
- <u>http://en.wikipedia.org/wiki/Computed_tomography</u>

